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ABSTRACT: Mixed linear models were developed
by animal breeders to evaluate genetic potential of
bulls. Application of mixed models has recently spread
to all areas of research, spurred by availability of
advanced computer software. Previously, mixed model
analyses were implemented by adapting fixed-effect
methods to models with random effects. This imposed
limitations on applicability because the covariance
structure was not modeled. This is the case with
PROC GLM in the SAS System. Recent versions of

the SAS System include PROC MIXED. This proce-
dure implements random effects in the statistical
model and permits modeling the covariance structure
of the data. Thereby, PROC MIXED can compute
efficient estimates of fixed effects and valid standard
errors of the estimates. Modeling the covariance
structure is especially important for analysis of
repeated measures data because measurements taken
close in time are potentially more highly correlated
than those taken far apart in time.
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Introduction

The term “repeated measures” as used in this paper
refers to multiple responses taken in sequence on the
same experimental unit, such as an animal. Usually,
the responses are taken over time, as in weekly weight
measurements to establish growth curves. However,
the repeated measures could be taken in spatial
sequence, such as dimensions of vertebrae. The typical
repeated measures experiment in animal research
consists of animals randomly assigned to treatment
groups, and with responses measured on each animal
over a sequence of time points. Repeated measures
experiments are a type of factorial experiment, with
treatment and time as the two factors. They have been
used commonly in animal, plant, and human research
for several decades, but only in recent years have
statistical and computing methodologies been availa-
ble to analyze them effectively and efficiently.

The objectives of repeated measures data analysis
are to examine and compare response trends over
time. This can involve comparisons of treatments at
specific times, or averaged over time. It also can
involve comparisons of times within a treatment.
These are objectives common to any factorial experi-

ment. The feature of repeated measures experiments
that requires special attention in data analysis is the
correlation pattern among the responses on the same
animal over time.

Methods for Analyzing Repeated
Measures Data

Responses measured on the same animal are
correlated because they contain a common contribu-
tion from the animal. Moreover, measures on the same
animal close in time tend to be more highly correlated
than measures far apart in time. Also, variances of
repeated measures often change with time. These
potential patterns of correlation and variation may
combine to produce a complicated covariance structure
of repeated measures. Special methods of statistical
analysis are needed for repeated measures data
because of the covariance structure. Standard regres-
sion and analysis of variance methods may produce
invalid results because they require mathematical
assumptions that do not hold with repeated measures
data.

There are several statistical methods used for
analyzing repeated measures data. Ranging from most
basic to most sophisticated, these include 1) separate
analyses at each time point, 2) univariate analysis of
variance, 3) univariate and multivariate analyses of
time contrast variables, and 4) mixed model metho-
dology. Separate analyses at each time point do not
require special methods for repeated measures but do
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not directly address the objectives of examining and
comparing trends over time. The other three ap-
proaches require special methodology and software.

Development of statistical methods for repeated
measures data has been an active area of research in
the past two decades because of advancements in
computing hardware and software. Enhancements in
the SAS System (SAS, 1996) reflect the advance-
ments in methodology and hardware. When the SAS
System became available on a commercial basis in
1976, it contained the GLM procedure. This procedure
enabled users to perform univariate analysis of
variance but did not provide valid standard errors for
most estimates. Moreover, conclusions derived from
univariate analysis of variance are often invalid
because the methodology does not adequately address
the covariance structure of repeated measures. In
1984, the REPEATED statement was added to the
GLM procedure. The results provided by the
REPEATED statement were based on univariate and
multivariate analyses of contrast variables computed
from the repeated measures variables. This approach
basically bypassed the problems of covariance struc-
ture rather than addressing them directly. The
REPEATED statement enabled users to obtain
statistical tests for effects involving time trends.
However, the tests were inefficient and the problem of
incorrect standard errors remained. In addition, miss-
ing data on even one measure of an animal caused all
the data for that animal to be ignored.

In 1992, the MIXED procedure was released in the
SAS System. It provided capabilities of mixed model
methodology for analysis of repeated measures data.
Use of mixed model methodology enabled the user to
directly address the covariance structure and greatly
enhanced the user’s ability to analyze repeated
measures data by providing valid standard errors and
efficient statistical tests. In addition, some missing
measures do not cause all data for an animal to be
ignored.

In this paper, one example data set will be used to
illustrate the four methods of analysis and their
respective advantages and shortcomings. The data are
from an experiment that investigated effects of several
supplemental sources of dietary Mg on urinary Mg
excretion in lambs. Van Ravenswaay et al. (1992)
described results of a similar, but different, experi-
ment. Treatments were a basal diet (1,275 ppm Mg)
supplemented with 0, 700, 1,400, or 2,100 ppm Mg as
reagent-grade anhydrous MgSO4, or 1,400 ppm Mg as
each of three commercial oxide sources. The seven
treatments are referred to as A through G in the SAS
data analysis. Five lambs were assigned to each
treatment and housed in individual pens. Thus, each
pen (or, equivalently, each lamb) is an experimental
unit. Urinary Mg was measured for each lamb on 10
consecutive days. Data from one lamb in each of
treatments A, B, and D were removed because these
lambs were obvious outliers, having either excessively
high or low values of urinary Mg at all days. Also, the
response from one lamb in treatment A at time 7 was

removed because it was an apparent outlier, with an
excessively large value of urinary Mg.

The statistical analysis methods illustrated in this
paper focus on treatment comparisons at specific
times, treatment comparisons averaged over times,
and on changes over time in specific treatments.
Differences between treatments A and B are computed
at individual times and averaged across times. Stan-
dard errors are computed based on each of the
methods of analysis where possible. Comparison of
treatments A and B illustrates the effect of the lowest
experimental rate of reagent-grade anhydrous MgSO4.
However, choice of the difference between A and B was
made only for the purpose of illustrating treatment
comparisons. Comparisons involving other treatments
would be implemented in similar fashion. Also,
comparisons of times are illustrated with differences
between the mean for each time and the mean of all
subsequent times for treatment D. Standard errors are
computed using each method of analysis. In most
cases, SAS statements are shown that produce each of
the four methods of analysis, and results are summa-
rized. However, the intent is not to present detailed
instructions on use of SAS and its interpretation.
Rather, the purpose is to present an overview of the
methodologies and to illustrate how they are im-
plemented in the SAS System. Other software that
implements the same methods produces similar out-
put. Results are presented in the body of the paper
without formal mathematical equations. Technical
details are presented in the technical appendix.

Different SAS procedures require the data set to be
organized differently. Separate analyses at each time
and the GLM REPEATED statement require the data
to be organized in “multivariate mode.” That is, there
is one row per experimental unit in the data set, and
the measurements at each time are considered
separate response variables. Here the measurement at
time 1 is EXC1, at time 2 is EXC2, and so on. Data
from the example experiment were stored in a SAS
data set named SU_MULT in a multivariate mode.
The univariate ANOVA and MIXED procedure require
that the data be organized in “univariate mode,” that
is, one row per experimental unit at each time, with
all urinary Mg measurements entered as values of a
variable named EXC. Data from the example are
stored in a SAS data set named SU_UNI in a
univariate mode.

Means plotted in Figure 1 show urinary Mg content
increasing over time for all treatments except A, but
tending to level out after 2 to 4 d. The profile for
treatment A (the basal diet) shows urinary Mg
content less than for other treatments on all days after
d 1. Profiles for treatments B, C, and D (sulfate
source) show increases in urinary Mg corresponding
to increases in dietary Mg. Profiles for treatments E,
F, and G (oxide sources) show less urinary Mg than
for the same level (1,400 ppm) of dietary Mg in the
sulfate source.
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Table 1. Treatment means at each day, with least significant difference (LSD), and differences
between means for treatments A and B, with standard errors

aIndicates first day that is not significantly different from average of subsequent days for each treatment.

Treatment

Day A B C D E F G LSD trt A − trt B

1 393.4a 378.3 517.4 407.3 470.6 424.3a 340.5 202.7 15.1 (104.6)
2 420.1 536.8a 733.9a 685.6 553.5 467.0 597.7 169.5 −116.7 (87.4)
3 402.4 580.7 738.0 790.6 625.0a 471.4 676.7a 172.6 −178.3 (89.0)
4 405.7 583.5 747.7 807.9 604.9 493.4 699.7 148.5 −177.8 (76.6)
5 427.9 596.5 780.3 841.6a 625.6 476.4 760.7 164.9 −168.6 (85.0)
6 408.9 633.8 765.2 904.7 680.0 524.9 698.6 159.2 −225.0 (82.1)
7 459.8 567.2 769.9 907.1 681.3 594.3 658.7 207.3 −107.4 (112.3)
8 424.7 571.8 743.9 927.3 638.1 533.8 708.7 165.4 −147.1 (85.3)
9 471.2 643.3 824.9 887.4 666.8 565.7 722.7 215.4 −172.1 (111.1)

10 474.3 611.1 800.7 918.2 678.9 502.3 673.1 175.1 −136.8 (90.3)

Figure 1. Urinary Mg excretions (mg) for seven diets
over 10 d.

Analysis at Individual Time Points

Analysis of data at each time point examines
treatment effects separately at individual observation
times and makes no statistical comparisons among
times. No inference is drawn about trends over time,
so this method is not truly a repeated measures
analysis. Use of analysis at each time point is usually
at a preliminary stage of data analysis and is not a
preferred method for final publication because it does
not address time effects. SAS statements to obtain
analyses at each time point are:

PROC GLM DATA = SU_MULT; CLASS TRT;
MODEL EXC1-EXC10 = TRT;
MEANS TRT/LSD;
ESTIMATE ‘trt A − trt B’ TRT 1 −1 0 0 0 0 0;

RUN;
[1]

Results are summarized in Table 1, showing means
for each treatment at each day, with least significant

difference ( LSD) values for comparing treatments at
each day. Means and LSD values are obtained from
the MEANS statement in [1]. The ESTIMATE state-
ment in [1] computes the difference between the
means for treatments A and B at each day, with
standard errors, which also are presented in Table 1.
Similar ESTIMATE statements could be used to
compute differences between means for any treat-
ments, or combinations of treatments. These LSD
values and standard errors of estimates are valid
because they only involve data at the same time.

Univariate Analysis of Variance
Using the GLM Procedure

Univariate analysis of variance (ANOVA), histori-
cally, is the method most commonly applied to
repeated measures data that makes comparisons
between times. It treats the data as if they were from
a split-plot design with the animals as whole-plot
units and animals at particular times as sub-plot
units. This approach also is referred to as a split plot
in time analysis (Damon and Harvey, 1987). If
measurements have equal variance at all times, and if
pairs of measurements on the same animal are
equally correlated, regardless of the time lag between
the measurements, then the univariate ANOVA is
valid from a statistical point of view, and, in fact,
yields an optimal method of analysis. The condition
required for validity of the univariate ANOVA tests is
the so-called Huynh-Feldt (H-F) condition (Huynh
and Feldt, 1970), which is mathematically less
stringent than equal variances and covariances.

However, measurements close in time are often
more highly correlated than measures far apart in
time, which will invalidate tests for effects involving
time. In the present example, tests for DAY and
TRT*DAY interaction are invalid because the data fail
to meet the H-F assumptions.
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Table 2. Univariate analysis of variance

Source of
variation df MS Expected MS F P

TRT 6 729,793 + 9.95 + Q (trt)s2 sd
2

8.22 .0001

PEN(TRT) 25 88,854 + 9.96s2 sd
2

DAY 9 188,780 + Q(day)s2 21.13 .0001
TRT*DAY 54 13,067 + Q(trt*day)s2 1.46 .0307
ERROR 224 8,951 s2

A univariate ANOVA is obtained from PROC GLM
with the following statements:

PROC GLM DATA = SU_UNI;
CLASS TRT PEN DAY;
MODEL EXC = TRT PEN(TRT) DAY TRT*DAY;
RANDOM PEN(TRT)/TEST;
LSMEANS TRT/STDERR E = PEN(TRT);
LSMEANS TRT*DAY/PDIFF;

RUN;
[2]

Notice that the univariate version of the data set is
used. The MODEL statement specifies sources of
variation for the ANOVA. The RANDOM statement
produces a table of expected mean squares which, in a
true split-plot experiment, can be used to determine
appropriate denominators of F-statistics for all terms
in the MODEL statement. These tests are produced by
the TEST option at the end of the RANDOM
statement. Complete output from statements [2] is not
shown. Instead, partial results are summarized in the
ANOVA in Table 2. In this case, an appropriate
(though not exact because of the missing datum in d 7
of treatment A) test statistic for TRT is F=MS[TRT]/
MS[PEN(TRT)]. Tests for effects of DAY and
TRT*DAY use F-statistics with MS[ERROR] for
denominator mean square. These tests are not valid
because the data do not satisfy the H-F condition. The
first LSMEAN statement computes means for each
treatment, averaged over days, with standard errors.
The second LSMEANS statement computes means for
combinations of treatments and days, with standard
errors. Partial results from the LSMEANS statements
are shown in Table 3.

In addition to the potential problems of statistical
validity with univariate ANOVA analysis of repeated
measures, there are potential shortcomings with
capabilities of the GLM procedure. The LSMEANS
statement in PROC GLM does not compute correct
standard errors for the TRT*DAY means, even if
correlation structure of the repeated measures is not a
problem, that is, even if variances are equal and
correlations are equal. For example, none of the
univariate ANOVA standard errors for trt D at
individual days in Table 3 are valid because they do
not incorporate the variance between animals. Also,
comparisons of LSMEANS between treatments at

specific days (not shown) are not valid due to
incorrect calculation of standard errors of differences.
More detail on these problems is presented in Littell
et al. (1996).

Analysis of Contrast Variables Using the GLM
REPEATED Statement

Contrast variables in repeated measures data are
linear combinations of the responses over time for
individual animals. A familiar example from basic
statistical methodology is given by the orthogonal
polynomials (Snedecor and Cochran, 1980), which
represent linear, quadratic, cubic, etc., trends over
time. Another example is the set of differences
between responses at consecutive time points, that is,
changes from time 1 to time 2, time 2 to time 3, and so
forth. A set of contrast variables can be used to
analyze trends over time and to make comparisons
between times in repeated measures data. The origi-
nal repeated measures data for each animal are
transformed into a new set of variables given by a set
of contrast variables. Then, multivariate and univari-
ate analyses can be applied to these new variables.
This provides a method for analyzing repeated meas-
ures data that evades some of the covariance structure
problems that invalidate univariate ANOVA analyses,
as discussed in the previous section. The REPEATED
statement in GLM provides automatic computation
and analyses for several common choices of contrast
variables. Data must be in a multivariate mode for use
of the GLM REPEATED statement. For example,
suppose that TRT is the variable indicating treatment
groups and that there are measurements taken at 10
time points, entered in the data set as Y1, Y2, ... , Y10.
Generic GLM statements are:

PROC GLM DATA = MULT;
CLASS TRT;
MODEL Y1−Y10 = TRT;
REPEATED TIME <type of contrast> / <options>;

[3]
Note that “TIME” is not a variable in the SAS data set
named MULT. Rather, it is only a name attached to
the set of contrasts to be analyzed. Also, the MODEL
statement in [3] is the same as the MODEL statement
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Table 3. Least squares means with standard errors for treatments averaged over
days and for treatment D on individual days

Univariate Compound AR ( 1 ) plus
Mean ANOVA symmetric Unstructured random effects

trt A 428.9 (48.0) 428.9 (47.3) 429.7 (47.3) 428.9 (47.6)
trt B 570.3 (47.1) 570.3 (47.1) 570.3 (47.1) 570.3 (47.1)
trt C 742.2 (42.2) 742.2 (42.2) 742.2 (42.2) 742.2 (42.2)
trt D 807.8 (47.1) 807.8 (47.1) 807.8 (47.1) 807.8 (47.1)
trt E 622.5 (42.2) 622.5 (42.2) 622.5 (42.2) 622.5 (42.2)
trt F 505.3 (42.2) 505.3 (42.2) 505.3 (42.2) 505.3 (42.2)
trt G 653.7 (42.2) 653.7 (42.2) 653.7 (42.2) 653.7 (42.2)

trt D at d 1 407.3 (47.3) 407.3 (65.1) 407.3 (73.9) 407.3 (65.4)
trt D at d 2 685.6 (47.3) 685.6 (65.1) 685.6 (61.8) 685.6 (65.4)
trt D at d 3 790.7 (47.3) 790.7 (65.1) 790.7 (63.0) 790.7 (65.4)
trt D at d 4 808.0 (47.3) 808.0 (65.1) 808.0 (54.2) 808.0 (65.4)
trt D at d 5 841.6 (47.3) 841.6 (65.1) 841.6 (60.1) 841.6 (65.4)
trt D at d 6 904.7 (47.3) 904.7 (65.1) 904.7 (58.1) 904.7 (65.4)
trt D at d 7 907.1 (42.3) 907.1 (65.1) 907.1 (72.9) 907.1 (65.4)
trt D at d 8 927.3 (47.3) 927.3 (65.1) 927.3 (60.3) 927.3 (65.4)
trt D at d 9 887.4 (47.3) 887.4 (65.1) 887.4 (78.6) 887.4 (65.4)
trt D at d 10 918.2 (47.3) 918.2 (65.1) 918.2 (63.9) 918.2 (65.4)

in [1]; “TRT” is the only effect listed. Selections for
“type of contrast” are listed in SAS (1989). It must be
emphasized that only animals with data at all days
are used in the analyses from the REPEATED
statement.

Van Ravenswaay et al. (1992) used comparisons of
urinary Mg at each day with the mean for subsequent
days to assess when urinary Mg reached a plateau,
that is, ceased to increase significantly. The HEL-
MERT option in the REPEATED statement provides
contrasts of this type. The Helmert contrasts will be
used with the example data set to illustrate analyses
of time contrast variables using the REPEATED
statement. SAS statements to obtain these results are:

PROC GLM DATA=SU_MULT;
CLASS TRT;
MODEL EXC1−EXC10 = TRT;
REPEATED DAY HELMERT / SUMMARY;

RUN;
[4]

The REPEATED statement produces results from
several statistical methods to obtain tests for effects
involving DAY. Partial output from the REPEATED
statement in [4] is summarized in Table 4, showing P-
values for five test statistics for DAY and TRT*DAY
effects. Two multivariate tests are shown (Pillai’s
trace and Roy’s greatest root), although the
REPEATED statement actually produces four mul-
tivariate tests. Results of the two tests not shown
agree approximately with those of Pillai’s trace. If
there were the same number of animals per treatment
and no missing data on any animal, then all four
multivariate tests would have equal results.

All five test statistics for DAY in Table 4 show
highly significant effects of DAY ( P = .0001). This is

not a point of contention. However, there is considera-
ble disagreement in the results for TRT*DAY. Pillai’s
trace finds TRT*DAY nonsignificant ( P = .3361),
whereas Roy’s greatest root declares TRT*DAY highly
significant ( P = .0013). Discrepancies such as this are
explainable but are common occurrences for these two
multivariate tests. The REPEATED statement also
produces tests that are adjustments to the P-value
from the univariate ANOVA. They are shown in Table
4. (If all animals had complete data, the univariate
ANOVA results in Table 4 would agree exactly with
those in Table 2.) Based on our experiences, we prefer
the G-G adjusted P-value instead of the multivariate
tests.

Other results from the REPEATED statement in [4]
are shown in Table 5. The label DAY.1 refers to a
difference between the response EXC1 on d 1 and the
mean of responses EXC2 on d 2 through EXC10 on d
10. That is, DAY.1 = EXC1 − (EXC2 + ... + EXC10)/9.
Likewise, the label DAY.2 refers to EXC2 − (EXC3 +
... + EXC10)/8, and so forth. The REPEATED
statement causes PROC GLM to compute an ANOVA
for each of the contrast variables DAY.1 through
DAY.9. The ANOVA for DAY.1 shows treatments are
significantly different ( P = .0022), which means that
the difference between EXC1 and the mean of EXC2
through EXC10 is not the same for all treatments.
Actually, this is a component of interaction between
treatments and days. Treatments are not significantly
different for the contrast variables DAY.2 ( P = .5228)
through DAY.9 ( P = .3043). Interpreted at face value,
this would indicate no interaction between treatments
and d 2 through d 10; in other words, that profiles for
all treatments are parallel from d 2 through d 10. But
inspection of Figure 1 indicates profiles are not all
parallel. For example, the profile for treatment D
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Table 4. Significant probabilities for tests of effects involving days from
REPEATED statement in PROC GLM

Multivariate Univariate ANOVA

Roy’s
Pillai’s greatest G-G H-F

Source df trace root Unadjusted adjusted adjusted

Day 9 .0001 .0001 .0001 .0001 .0001
Trt × day 54 .3361 .0013 .0885 .1686 .1215

Table 5. Summary of contrast variable ANOVA, showing mean squares and significance probabilities

Source of
variation

Contrast variable

DAY.1 DAY.2 DAY.3 DAY.4 DAY.5 DAY.6 DAY.7 DAY.8 DAY.9

Treatment 79,196 12,574 2,651 3,283 10,791 2,179 6,394 5,609 5,105
Error 16,233 14,253 9,898 6,408 13,506 11,070 22,307 4,321 3,994
P-value for F .0022 .5228 .9466 .7930 .5802 .9745 .9375 .2958 .3043

(sulfate source, 2,100 ppm) continues to increase
following d 2, but the profile for treatment C (sulfate
source, 1,400 ppm) is essentially level following d 2.
Thus, it is meaningful to examine trends over days for
treatments individually.

CONTRAST statements can be used in GLM to
assess the significance of the variables DAY.1 through
DAY.9 relative to the linear combinations defined in
the CONTRAST statements. In fact, the linear combi-
nations defined by a CONTRAST statement do not
have to be “contrasts” in the sense that coefficients do
not have to add to zero. Such is the case with the
following statements because each CONTRAST state-
ment actually defines a treatment mean:

CONTRAST ‘Trt A’ INTERCEPT 1 TRT 1 0 0 0 0 0 0;
CONTRAST ‘Trt B’ INTERCEPT 1 TRT 0 1 0 0 0 0 0;
CONTRAST ‘Trt C’ INTERCEPT 1 TRT 0 0 1 0 0 0 0;
CONTRAST ‘Trt D’ INTERCEPT 1 TRT 0 0 0 1 0 0 0;
CONTRAST ‘Trt E’ INTERCEPT 1 TRT 0 0 0 0 1 0 0;
CONTRAST ‘Trt F’ INTERCEPT 1 TRT 0 0 0 0 0 1 0;
CONTRAST ‘Trt F’ INTERCEPT 1 TRT 0 0 0 0 0 0 1;

[5]
The statement CONTRAST ‘Trt A’ defines the mean
for treatment A. Thus, the objective of the CON-
TRAST ‘Trt A’ statement is to assess whether the
means of DAY.1 through DAY.9 are different from
zero in treatment A. Output for CONTRAST state-
ments [5] is summarized in Table 6. The difference
between the mean for d 1 and the mean for d 2
through 10 (DAY.1) is significantly different from
zero for all treatments except treatments A (basal, P =
.5348) and F (oxide 1,400 ppm, P = .1270). The
difference between the mean for d 2 and the mean for
d 3 through d 10 (DAY.2) is not significantly different
from zero for treatments A ( P = .7914), B ( P = .3115),
C ( P = .4903), and F ( P = .3287), but the difference is
significant for treatments D, E, and G at the .1 level.

The first day that is not significantly different from
the mean for subsequent days might be considered the
day at which the response begins to reach a plateau.
These days are indicated in Table 1.

Analyses of contrast variables as performed by the
REPEATED statement in GLM are valid in the sense
that equal variances and correlations are not required
of measures at all times. However, results from the
REPEATED statement are statistical tests, and no
capability is provided by GLM for computing standard
errors of comparisons. Also, only specific types of
comparisons are available in the REPEATED state-
ment.

Mixed Model Analysis Using
the MIXED Procedure

As noted above, analysis of repeated measures data
requires special attention to the covariance structure
due to the sequential nature of the data on each
animal. Procedures discussed previously either avoid
the issue (analysis of contrast variables) or ignore it
(univariate analysis of variance). Ignoring the covari-
ance issues may result in incorrect conclusions from
the statistical analysis. Avoiding the issues may result
in inefficient analyses, which is tantamount to wast-
ing data. The general linear mixed model allows the
capability to address the issue directly by modeling
the covariance structure. This capability is im-
plemented in the MIXED procedure of the SAS
System.

There are two basic steps in performing a repeated
measures analysis using mixed model methodology.
The first step is to model the covariance structure. The
second step is to analyze time trends for treatments by
estimating and comparing means.
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Table 6. Significance probabilities for tests of whether mean for each day is different
from mean of subsequent days, for each treatment

Treatment DAY.1 DAY.2 DAY.3 DAY.4 DAY.5 DAY.6 DAY.7 DAY.8 DAY.9

A .5348 .7914 .4469 .3266 .9031 .6743 .9265 .2983 .8991
B .0027 .3115 .6862 .6143 .8790 .5064 .5826 .1051 .3181
C .0002 .4903 .4003 .3644 .9898 .6803 .7675 .0277 .4006
D .0001 .0044 .0703 .0344 .2581 .9203 .9588 .4631 .3395
E .0068 .0829 .5259 .1248 .4121 .7738 .7664 .2485 .6724
F .1270 .3287 .2214 .2810 .2042 .6133 .3755 .9948 .0346
G .0001 .0676 .5574 .9116 .2010 .8692 .5280 .7173 .0916

Modeling the Covariance Structure Using the
RANDOM and REPEATED Statements

in PROC MIXED

Measures on different animals are independent, so
covariance concern is only with measures on the same
animal. The covariance structure refers to variances
at individual times and to correlation between meas-
ures at different times on the same animal. There are
basically two aspects of the correlation. First, two
measures on the same animal are correlated simply
because they share common contributions from the
animal. This is due to variation between animals.
Second, measures on the same animal close in time
are often more highly correlated than measures far
apart in time. This is covariation within animals.
Usually, when using PROC MIXED, the variation
between animals is specified by the RANDOM state-
ment, and covariation within animals is specified by
the REPEATED statement.

Numerous structures are available as options on
the REPEATED and RANDOM statements in the
MIXED procedure. Three different structures will be
fitted to the sheep urinary Mg data, and one will be
chosen as best among the three.

First, a structure known as compound symmetry
( CS) will be fitted. This structure specifies that
measures at all times have the same variance, and
that all pairs of measures on the same animal have
the same correlation. The implication is that the only
aspect of the covariance between repeated measures is
due to the animal contribution, irrespective of prox-
imity of time. If this structure holds, then the
univariate ANOVA in Table 2 would have valid tests,
although the standard errors and tests of LSMEANS
from statements [2] would not necessarily be valid.
Compound symmetric structure can be fitted in two
ways with PROC MIXED. One way is with the
RANDOM statement:

PROC MIXED DATA=SU_UNI;
CLASS TRT PEN DAY;
MODEL EXC = TRT DAY TRT*DAY;
RANDOM PEN(TRT);

RUN;
[6]

This RANDOM statement specifies that there is a
contribution common to all measures on the same
animal, which results in equal variances at all times
and equal correlations between all pairs of times. Only
fixed effects are included in the PROC MIXED
MODEL statement.

Statements for fitting the compound symmetric
structure with the REPEATED statement are:

PROC MIXED DATA=SU_UNI;
CLASS TRT PEN DAY;
MODEL EXC = TRT DAY TRT*DAY;
REPEATED DAY / SUB=PEN(TRT) TYPE=CS R RCORR;

RUN;
[7]

Here, the REPEATED statement indicates via
SUB=PEN(TRT) that data are correlated on the same
animal (i.e., PEN(TRT)). Partial output from state-
ments [7] is shown in Figure 2. First, the covariance
matrix is printed under the heading “R Covariance
Matrix for PEN(TRT) 1 A,” indicating that this is the
covariance submatrix for the repeated measures from
the animal in PEN 1 in TRT A. All other animals are
assumed to have the same covariance matrix,
although heterogeneity of variances between animals
can be accommodated by the MIXED procedure. The
correlation matrix is printed under the heading
“Correlation Matrix for PEN(TRT) 1 A,” showing
correlation of .472 between all pairs of days regardless
of time proximity. Under the heading “Covariance
Parameter Estimates” are printed estimates of the two
variance components. The between-animal (inter-
animal) component is 7,993, and the within-
animal(intra-animal) component is 8,950. The total
variance for a measurement on a randomly chosen
animal, then, is 7,993 + 8,950 = 16,943. Notice that
8,951 is the residual error mean square from the
ANOVA in Table 2, essentially equal to the intra-
animal variance component. The correlation between
two measures on the same animal, assuming com-
pound symmetric structure, is

rCS = 7,993/(7,993 + 8,950) = .472.

Second, a general structure will be fitted. As an
option in PROC MIXED, this is indicated as “UN” for
“unstructured.” This structure makes no assumptions
regarding equal variances or correlations. Statements
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Figure 4. Observed average correlations and esti-
mated correlation functions from compound symmetric
and autoregressive plus random effect covariance struc-
tures.

for fitting this structure with the REPEATED state-
ment are

PROC MIXED;
CLASS TRT PEN DAY;
MODEL EXC = TRT DAY TRT*DAY;
REPEATED DAY / SUB=PEN(TRT) TYPE=UN R RCORR;

RUN;
[8]

Again, no RANDOM statement is used because inter-
animal variance is absorbed into the general struc-
ture. Results from statements [8] are displayed in
Figure 3, showing the covariance submatrix for PEN 1
in TRT A. All other animals have the same covariance
matrix. The diagonal of this matrix shows variances
ranging from 11,755 on d 4 to 24,703 on d 9. The
largest variance is approximately twice as large as the
smallest. This is not strong statistical evidence of
unequal population variances on the different days. In
particular, there is no evidence of generally increasing
or decreasing trends in the variances, as might occur
with other types of repeated measures, such as growth
curve data.

Next, the correlation matrix is printed under the
heading “R Correlation Matrix for PEN(TRT) 1 A.”
The correlations tend to decrease with increasing
length of time interval (lag) between the days, but
the trends tend to level out after a lag of 3 d rather
than decrease to zero. For example, the correlation of
.708 in row 2, column 3 is correlation between
responses at d 2 and d 3, of lag = 1. Reading to the
right in row 2, correlations decrease from .648, of lag =
2, to .233, of lag = 9. This is typical of repeated
measures covariance structure, and it suggests that
the pattern can be modeled mathematically. The
average correlation as a function of lag, rUN( ME-

AN) (lag), is plotted in Figure 4.
There are two major potential problems with using

the unstructured covariance. One, it requires estima-
tion of a large number of variance and covariance
parameters (36 in this case) and can lead to severe
computational problems, especially with unbalanced
data. Two, it does not exploit existence of trends in
variances and covariances over time, and thus often
results in erratic patterns of standard error estimates.

The trend in the correlations observed in Figures 3
and 4 can be modeled using a combination of
autoregressive structure within animals and a random
effect between animals. This combination structure
specifies an inter-animal random effect of differences
between animals, and a correlation structure within
animals that decreases with increasing lag between
measures. It is fitted with the MIXED procedure using
both RANDOM and REPEATED statements:

PROC MIXED;
CLASS TRT PEN DAY;
MODEL EXC = TRT DAY TRT*DAY;
RANDOM PEN(TRT);
REPEATED DAY / SUB=PEN(TRT) TYPE=AR(1);

RUN;
[9]

Results are printed in Figure 5, showing the covari-
ance and correlation matrices for animal 1 in treat-
ment A. The estimates of the covariance structure
parameters are 6,499 for the inter-animal variance,
10,609 for the intra-animal variance, and autoregres-
sive correlation coefficient of .4643. The correlation
function for the AR(1) plus random effect structure is

rAR( 1) +RE (lag) = (6,499 + 10,609(.4643)lag) /
(6,499 + 10,609),

where lag is the length of the time interval between
measures. This correlation function also is plotted in
Figure 4. The agreement is good between rAR( 1) +RE
(lag) and rUN (lag) in Figure 4, at least until lag = 7.
The values of rUN (lag) plotted in Figure 4 for lags of
7, 8, and 9 are based on only three, two, and one
correlation values, respectively, and are not highly
precise. Thus, AR(1)+RE seems to be a good choice for
covariance structure based on visual assessment.

Covariance structures can be objectively compared
using goodness of fit criteria that are printed by PROC
MIXED, including the REML log likelihood ( REML
logL) , Akaike information criterion ( AIC) , and
Schwarz Bayesian criterion ( SBC) . The AIC and SBC
are adjusted versions of REML logL to impose a
penalty according to the number of parameters
estimated. The penalty imposed by SBC is more
severe than the one imposed by AIC. The SBC
criterion will be used here. Its value for each of the
covariance structures is shown below:

Structure No. of parameters SBC
CS 2 −1,573

UN 36 −1,636
AR(1)+RE 3 −1,557
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In the form printed by PROC MIXED, SBC is negative
for this example. The larger the value of SBC, the
better the structure. The values of SBC for CS and
AR(1)+RE are close, with AR(1)+RE slightly better.
Thus, AR(1)+RE will be used as the covariance
structure for this example.

Tests of Fixed Effects for Different
Covariance Structures

The MIXED procedure prints tests for all fixed
effects listed in the model statement. These tests are
analogous to the univariate ANOVA F-tests in Table
2. Tests of fixed effects for MODEL statements in [7],
[8], and [9] are shown in Table 7, with univariate
ANOVA tests summarized from Table 2 for compari-
son. Test results for univariate ANOVA and CS
covariance are very similar; they differ only because of
the missing datum at d 7 in treatment A. Both would
be valid if CS or H-F covariance structure assump-
tions held. Results of the mixed model test from UN
covariance in Table 7 and the multivariate tests from
Pillai’s trace in Table 4 require no covariance struc-
ture assumption. The P-values from these tests for
Trt*Day interaction are quite different in this exam-
ple, partly because the multivariate test uses no data
from the animal in treatment A with the missing
value at d 7. In other applications in our experiences,
results of these two tests usually have been more
similar. The G-G adjusted P-value for Trt*Day in
Table 4 (.1686) is in closer agreement with the
AR(1)+RE covariance P-value in Table 7 (.0905).
When all data were removed for the lamb in treatment
A that had the missing value at d 7, the P-value for
AR(1)+RE covariance changed to .1962, in even closer
agreement with the G-G adjusted value.

Estimating and Comparing Means Using
ESTIMATE Statements

Three types of comparisons are used to illustrate
effects of covariance structure on estimates and
standard errors of estimates. First is the difference
between means for treatments A and B averaged over
days. Second are differences between means for
treatments A and B at each day. These types of
comparisons are obtained by using the following
statements in conjunction with PROC GLM state-
ments [2] for the univariate ANOVA, or with PROC
MIXED statements [7], [8], or [9]:

ESTIMATE ‘trt A-B avg. over day 1−10’ TRT 1 −1;
ESTIMATE ‘trt A-B at day 1’ TRT 1 −1 TRT*DAY

1 0 0 0 0 0 0 0 0 0
−1 0 0 0 0 0 0 0 0 0;

ESTIMATE ‘trt A-B at day 2’ TRT 1 −1 TRT*DAY
0 1 0 0 0 0 0 0 0 0

0 −1 0 0 0 0 0 0 0 0;
·
·
·

ESTIMATE ‘trt A-B at day 9’ TRT 1 −1 TRT*DAY
0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 −1 0;
ESTIMATE ‘trt A-B at day 10’ TRT 1 −1

TRT*DAY 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 −1; [10]

Third are differences between means for each day and
the average of means for subsequent days for treat-
ment D, which are obtained by using the following
ESTIMATE statements with statements [2], [7], [8], or
[9]:

ESTIMATE ‘day 1 − days 2−10 in trt D’ DAY −9 1
1 1 1 1 1 1 1 1

TRT*DAY 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
−9 1 1 1 1 1 1 1 1 1 /

DIVISOR=9;
ESTIMATE ‘day 2 − days 3−10 in trt D’ DAY 0 −8

1 1 1 1 1 1 1 1
TRT*DAY 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 −8 1 1 1 1 1 1 1 1 /

DIVISOR=8;
·
·
·

ESTIMATE ‘day 8 − days 9−10 in trt D’ DAY 0 0
0 0 0 0 0 −2 1 1

TRT*DAY 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 −2 1 1 /

DIVISOR=2;
ESTIMATE ‘DAY.9 in trt D’ day 0 0 0 0 0 0 0 0

−1 1
TRT*DAY 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 −1 1 /

DIVISOR=1; [11]

See Littell et al. (1991) for details on writing
ESTIMATE and CONTRAST statements. Results
from using ESTIMATE statements [10] and [11] with
GLM statements [2] and MIXED statements [7], [8],
and [9] are shown in Table 8.

Different covariance structures produce different
standard errors of estimates. The covariance structure
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Figure 2. Compound symmetric covariance and correlation matrices and covariance parameter estimates.

that provides the best fit is the appropriate one to use,
although it might not result in the smallest standard
errors. The AR(1)+RE structure was indicated as best
among the covariance structures on the basis of the
SBC criterion and the visual assessment in Figure 4.
Thus, the standard errors resulting from AR(1)+RE
are considered the most appropriate to report.

Table 8 shows estimates and standard errors of
differences between means for treatments A and B
averaged over days and at individual days, using
univariate ANOVA (PROC GLM) and mixed models
with CS, UN, and AR(1)+RE covariance structures
(PROC MIXED). These estimates involve differences
between animals. Table 8 also shows estimates and
standard errors of differences between means for each
day and subsequent days for treatment D, using the
same various covariance structures. These estimates
involve differences within animals. The selection of
comparisons was made to illustrate 1) how estimates
are affected by covariance structure and 2) how
assumed covariance structure affects standard errors

of comparisons of treatment and day means. Many of
the estimates of differences in Table 8 have the same
value regardless of covariance structure, although
their standard errors may differ. Recall that there
were four animals in each of treatments A and B, but
one of the animals in treatment A had missing data at
d 7.

Estimates of differences between treatments A and
B on specific days in Table 8 are the same regardless
of covariance structure except on d 7, because all
animals used in the analysis had no missing data
except at d 7. Standard errors of these estimates,
however, depend on the choice of covariance structure
for all days regardless of whether there are missing
data. For example, except at d 7, the standard errors
for estimates from univariate ANOVA are all 66.9, but
from CS structure they are 92.0. This is because the
univariate ANOVA standard errors (from GLM) are
computed as if all observations are independent, or
equivalently, as if the between-animal variance were
zero. As far as standard errors from ESTIMATE
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Figure 3. Unstructured covariance and correlation matrices.

statements are concerned, PEN(TRT) in statements
[2] is considered a fixed effect by GLM, giving the
standard error computation 66.9 = (2*8,951/4)Ø,
where 8,951 is the residual error mean square in
Table 2. The CS standard errors incorporate the
between-animal variance; 92.0 = (2*(7,993 + 8,950)/
4)—Ø, where 7,993 and 8,950 are the between- and
within-animal variance component estimates, respec-
tively, from Figure 2. The AR(1)+RE standard errors
also incorporate the between-animal variance; 92.5 =
(2*(6,499 + 10,609)/4)Ø, where 6,499 and 10,609 are
the between- and within-animal variance component
estimates, respectively, from Figure 5.

The UN covariance does not model variation as a
function of changes in time. This results in different
standard errors for the trt A − trt B estimates on
different days (Table 8), because computation of these
standard errors does not exploit the phenomenon that
true variation should change smoothly over days, if it
changes at all. Consequently, standard errors of trt A
− trt B estimates change erratically over days. By
comparison, standard errors of trt A − trt B estimates
are equal over days using CS (92.0), or AR(1)+RE
(92.5) covariance structures, except for d 7, which had
the missing value for trt A. This is reasonable because
there is no evidence in the data of variance trends over
experimental days.

Estimates of differences between means for in-
dividual days and means for subsequent days in

treatment D are the same regardless of the assumed
covariance structure, because all animals in treatment
D have complete data (lower portion of Table 8).
However, standard errors of the estimates are differ-
ent for different assumed covariance structures.
(Standard errors using univariate ANOVA and CS are
virtually equal because the estimates of differences
are within-animal comparisons and do not involve the
between animal variance.) The standard errors follow
smooth trends using univariate ANOVA, CS, or
AR(1)+RE covariance structures, whereas they vary
erratically for UN covariance. Standard errors using
CS structure increase from 49.9 to 66.9, but standard
errors for AR(1)+RE change very little over days. The
discrepancies between CS and AR(1)+RE standard
errors illustrate the need to select appropriate covari-
ance structure. For example, the standard error of the
difference between d 9 and d 10 assuming CS
structure (66.9) is approximately 25% larger than the
standard error for that difference assuming
AR(1)+RE structure (53.5).

Summary and Conclusions

Mixed linear models can be implemented with
either the GLM or the MIXED procedures in the SAS
System. However, the GLM procedure is actually a
fixed effects procedure with accessory features, such as
the RANDOM statement, to make it useful for
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Figure 5. Autoregressive order 1 plus random pen effect covariance and correlation matrices and covariance
parameter estimates.

Table 7. F-values and significance probabilities using univariate ANOVA, and for
tests of fixed effects using different covariance structures in PROC MIXED

Univariate Compound AR(1) plus
Source df ANOVA symmetric Unstructured random effect

Trt 6 8.22 (.0001) 8.30 (.0001) 8.27 (.0001) 8.17 (.0001)
Day 9 21.13 (.0001) 21.09 (.0001) 18.99 (.0001) 16.07 (.0001)
Trt × day 54 1.46 (.0307) 1.46 (.0306) 1.99 (.0315) 1.31 (.0905)

analyzing certain aspects of mixed model data. Most
tests of hypothesis in an ANOVA can be computed
correctly with GLM but require optional specifications,
such as the TEST statement. Standard errors from
LSMEANS and ESTIMATE statements in GLM
usually are not computed correctly. The MIXED
procedure was written from the start as a mixed
model procedure and almost always makes valid
computations for tests of hypothesis and standard
errors of estimates.

An important application of mixed linear models is
in the analysis of repeated measures data. Until
recently, repeated measures data usually were ana-
lyzed by univariate ANOVA as split plot in time data,
treating the experimental unit as a whole-plot and the
experimental unit at a particular time as a sub-plot.
This approach may be invalid because of failures for
assumptions to hold concerning variances and correla-
tions. The univariate ANOVA can be computed using
the GLM procedure, but, even if variance and
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Table 8. Estimates of differences between means for treatment A and B averaged over days, and on specific
days, and differences between means for each day and subsequent days for treatment D, with standard errors

Univariate Compound AR ( 1 ) plus
Estimate ANOVA symmetric Unstructured random effect

trt A − trt B −141.4 (21.4) −141.4 (66.7) −140.7 (66.7) −142.2 (67.3)
avg over days 1−10

trt A − trt B at d 1 15.1 (66.9) 15.1 (92.0) 15.1 (104.6) 15.1 (92.5)
trt A − trt B at d 2 −116.7 (66.9) −116.7 (92.0) −116.7 (87.4) −116.7 (92.5)
trt A − trt B at d 3 −178.3 (66.9) −178.3 (92.0) −178.3 (89.0) −178.3 (92.5)
trt A − trt B at d 4 −177.8 (66.9) −177.8 (92.0) −177.8 (76.6) −177.8 (92.5)
trt A − trt B at d 5 −168.6 (66.9) −168.6 (92.0) −168.6 (85.0) −168.6 (92.5)
trt A − trt B at d 6 −225.0 (66.9) −225.0 (92.0) −225.0 (82.1) −225.0 (92.5)
trt A − trt B at d 7 −106.9 (72.8) −106.9 (96.4) −99.2 (107.8) −114.5 (95.6)
trt A − trt B at d 8 −147.1 (66.9) −147.1 (92.0) −147.1 (85.3) −147.1 (92.5)
trt A − trt B at d 9 −172.1 (66.9) −172.1 (92.0) −172.1 (111.1) −172.1 (92.5)
trt A − trt B at d 10 −136.8 (66.9) −136.8 (92.0) −136.8 (90.3) −136.8 (92.5)

d 1 − d 2−10 in trt D 444.9 (49.9) 444.9 (49.9) 444.9 (62.5) 444.9 (53.3)
d 2 − d 3−10 in trt D 187.5 (50.2) 187.5 (50.2) 187.5 (58.5) 187.5 (53.4)
d 3 − d 4−10 in trt D 94.2 (50.6) 94.2 (50.6) 94.2 (48.8) 94.2 (53.5)
d 4 − d 5−10 in trt D 89.8 (51.1) 89.8 (51.1) 89.8 (39.3) 89.8 (53.5)
d 5 − d 6−10 in trt D 67.3 (51.8) 67.3 (51.8) 67.3 (57.2) 67.3 (53.5)
d 6 − d 7−10 in trt D 5.3 (52.9) 5.3 (52.9) 5.3 (52.3) 5.3 (53.5)
d 7 − d 8−10 in trt D 3.9 (54.6) 3.9 (54.6) 3.9 (74.0) 3.9 (53.2)
d 8 − d 9−10 in trt D −24.5 (57.9) −24.5 (57.9) −24.5 (32.3) −24.5 (52.8)
d 9 − d 10 in trt D 30.8 (31.1) 30.8 (66.9) 30.8 (31.1) 30.8 (53.3)

correlation assumptions are met, the GLM procedure
will not compute appropriate standard errors.

The REPEATED statement in GLM can be used to
obtain tests concerning time contrasts. These can be
useful, but no estimates are provided by the
REPEATED statement. Also, because the GLM
REPEATED statement must be run in a multivariate
mode of the data set, any missing data for an animal
will cause all of the data for that animal to be deleted.

Mixed model methodology, as implemented by the
MIXED procedure, makes it possible to analyze
repeated measures data correctly and efficiently by
first modeling the variance and correlation structure
of the repeated measures. Then the estimated covari-
ance structure is used to obtain generalized least
squares estimates of treatment and time differences.
Choice of appropriate covariance structure may affect
the computation of estimates, particularly with un-
balanced data. It almost certainly will affect computa-
tion of standard errors.

Implications

Computer software is currently available that
enables researchers to analyze repeated measures
data using mixed model methodology. This methodol-
ogy provides more valid and efficient statistical
analyses of repeated measures. Implementation of this
methodology requires the data analyst to model the
variance and correlation structure of the data as a
first step. Then, comparisons of treatments and trends
over time can be analyzed.
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Technical Appendix

The MIXED procedure is based on the general
linear mixed model

Y = Xb + ZU + e [12]

where Y is a n × 1 vector of observations, b is a p × 1
vector of fixed, unknown parameters, X is a n × p
design matrix for the fixed effects, U is a q × 1 vector
of unobservable random effects, Z is a n × q design
matrix for the random effects, and e is a n × 1 vector of
residual random errors. The random vector U is
assumed normally distributed with mean E(U) = 0
and variance V(U) = G, and e is assumed normally
distributed with mean E(e) = 0 and variance V(e) =
R. As a consequence, the observed data vector Y is
normally distributed with mean E(Y) = Xb and
variance V = V(Y) = V(ZU + e) = ZGZ′ + R. This
statistical model was developed for animal breeding,
primarily by C. R. Henderson (Henderson, 1984). In a
typical application, Y could be a vector of weaning
weights of calves born to cows that were bred to a set
of bulls, and the bulls were of different breeds. The
fixed effects portion Xb would model the fixed effects
of breed, and the ZU portion would model the random
effects of bulls. The residual error e would model
variation among cows.

In recent years the general linear mixed model has
been used in a large variety of applications outside
animal breeding. One such application is repeated
measures analysis (Vonesh and Chinchilli, 1997).

The standard model for a repeated measures
experiment, such as the Mg study discussed in this
paper, is

yijk = m + ai + dij + tk + ( at) ik + eijk [13]

where yijk is the response at time k on animal j in
treatment group i, m is the overall mean, ai is a fixed
effect of treatment i, dij is a random effect of animal j
in treatment group i, tk is a fixed effect of time k,
( at) ik is a fixed interaction effect of treatment i with
time k, and eijk is random error at time k on animal j
in treatment i. In terms of the general linear mixed
model [12], the vector b contains the fixed effect
parameters m, ai, tk and ( at) ik. The random vector U
contains the between-animal random effect variables
dij, and e contains the within-animal residual errors,
eijk. This model is a special case of the one proposed by
Diggle (1988).

The covariance structure of repeated measures
involves both the dij and eijk, but the part that
requires special attention is found in the eijk terms.
Usually, the dij are assumed independent with vari-
ance . The eijk on the same animal are assumedsd

2

correlated, but eijk on different animals are uncor-
related. That is,

cov(eijk, ei′j′k′) = 0

if either j fi j′ or i fi i′. The data on animal j in
treatment i are yij1, ..., yijt, where t is the number of
points for each animal. The covariance between
responses at times k and l on animal j in treatment i is

, )cov(yijk yijl = + , + )cov(dij eijk dij eijl
= ) + , )V(dij cov(eijk eijl
= + cov( , ) .sd

2 eijk eijl [14]

The covariance structures (compound symmetric,
autoregressive, etc.) may be imposed on the eijk of the
same animal.

For compound symmetric covariance structure,
= and = = + .,cov(eijk )eijl sb

2 ,cov(eijk )eijk )V(eijk sb
2 s2

Thus, from [12] covariance between two measures on
the same animal is

, )cov(yijk yijl = cov( )+ , +dij eijk dij eijl
= ) + , )V(dij cov(eijk eijl
= +sd

2 sb
2

[15]

and the variance of an observation is

V(yijk) = V(dij + eijk)
= + +sd

2 sb
2 s2

[16]

Note that and appear in [15] and [16] only as thesd
2 sb

2

sum + . Thus, there is a redundancy in thesd
2 sb

2

variance-covariance formulation, and either orsd
2 sb

2

must be set to zero in order to be able to estimate the
other. Setting = 0 drops the dij terms from thesd

2

model in [13]. This causes to become the between-sb
2

animal variance component. Setting = 0 leaves assb
2 sd

2

the between-animal variance component and makes
eijk on the same animal independent. The variance s2

is the within-animal variance component.
The univariate ANOVA in Table 2 (obtained from

SAS statements [2]) is based on the compound
symmetric covariance structure. The F-tests in Table 2
are valid. However, standard errors and comparisons
of LSMEANS from statements [2] are not necessarily
valid because the GLM procedure basically uses fixed
model methodology.

Statements [6] and [7] implement compound sym-
metry in the covariance structure using the MIXED
procedure. Statements [6] include a RANDOM state-
ment, which defines dij in the model [13], but no
REPEATED statement, which leaves the eijk on the
same animal independent. Thus, statements [6] set sd

2
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≥ 0 and = 0. Statements [7], on the other hand, dosb
2

not include a RANDOM statement that deletes dij

from the model [13], or, equivalently, set = 0. Butsd
2

the REPEATED statement in [7] specifies CS struc-
ture on the eijk, thus setting ≥ 0.sb

2

The unstructured (UN) “structure” specified no
mathematical pattern on covariances among the eijk in
model [13], so that the covariance between two
measures on the same animal is

cov(yijk, yijl) = cov(dij + eijk, dij + eijl)
= V(dij) + cov(eijk, eijl)
= +sd

2 sk,l′ [17]

where sk,l is the covariance between eijk and eijl. The
variance of an observation is

Y(yijk) = V(dij + eijk)
= + .sd

2 sk,k [18]

Because no mathematical pattern is imposed on the
sk,l parameters, and because always appears in thesd

2

sum with a sk,l parameter, the component must besd
2

set to zero in order to be able to estimate the sk,l
parameters. Thus, SAS statements [8] contain no
RANDOM statement and implement the UN structure
on the eijk with the REPEATED statement.

Autoregressive (order 1) structure specifies that

V(eijk) = s2 and
cov(eijk, eijl) = s2p|k−l| [19]

where |k−l| is the lag between times k and l. Thus
the variance of an observation yijk is

V(yijk) = V(dij + eijk)
= +sd

2 s2
[20]

and the covariance between two observations at times
k and l on the same animal is

cov(yijk, yijl) = cov(dij + eijk, dij + eijl)
= +sd

2 s2p|k−l|
[21]

Unlike the situation with CS and UN structure, there
is no redundancy in the mathematical formulation of
this covariance structure. That is, none of the
parameters in [20] and [21] can be deleted without
restricting the model. The between-animal variance sd

2

must be specified with the RANDOM statement and
the within-animal covariance s2p|k−l| must be defined
with the REPEATED statement, as in statements [9].

The REPEATED statement in GLM works on the

basis of linear combinations of data vectors. Conceptu-
ally, there are new sets of “variables” computed from
data on each animal of the form

xij =
akyijk∑

k=1

t

= a′yij

where a′ = (a1,...,at) is a vector of coefficients and =yij
′

(y ij1,...,yijt) is the vector of repeated measures on
animal j in treatment i. For example, a′ could be a
vector of coefficients for a polynomial. In the sheep Mg
example, the data for a given sheep are values of yij1 =
EXC1, yij2 = EXC2, ..., yij10 = EXC10 is a row of the
SAS data set SU_MULT. Linear combinations im-
plemented by the REPEATED statement in state-
ments [4] are

DAY.1 = EXC1−(EXC2+...+EXC10)/9
DAY.2 = EXC2−(EXC3+...+EXC10)/8

·
·
·

DAY.9 = EXC9−EXC10.

Results from the REPEATED statement, such as
summarized in Table 3, are simply ANOVA computa-
tions performed on DAY.1, ..., DAY.9. The ANOVA
tests in Table 3 are valid regardless of the covariance
structure of the original data. Likewise, results in
Table 4 are from tests generated from the CONTRAST
statements [5] of whether treatment means differ from
zero, applied to the variables DAY.1, ..., DAY.9.
(Results from CONTRAST statements [5] using GLM
are equivalent to results that would be obtained with
corresponding CONTRAST statements using MIXED
with UN covariance, provided there were no missing
data.) The REPEATED statement produces useful
output in the form of tests of hypothesis and is
statistically valid because covariance concerns are
avoided by analyzing the linear combination variables.
However, the REPEATED statement does not produce
estimates of treatment means and differences between
treatment means based on the linear combination
variables.

The MIXED procedure works based on principles of
maximum likelihood and generalized least squares
applied to the model [12].

The random data vector from model [12] has
expected value E(Y)=Xb and variance matrix V =
V(Y) = ZGZ′ + R. Generalized least squares methodol-
ogy provides

b̂ = (X ′V−1X)−1X′V−1Y [22]
as the best linear unbiased estimate (BLUE) of b.
The variance matrix of b̂ is
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V( b̂) = (X ′V−1X)−1. [23]
Thus, statistical inference about linear combinations
of fixed effects is based on linear combinations of the
form L′b, which are estimated by the corresponding
linear combinations of b̂, L′b̂. The vector of estimates
is BLUE of L′b, and has covariance matrix

V(L′b̂) = L′(X ′V−1X)−1L. [24]

However, V contains unknown variance and covari-
ance parameters.

The MIXED procedure works in two steps. The first
step is to estimate variance and covariance
parameters, as specified by the RANDOM and
REPEATED statements. The RANDOM statement
defines the ZU portion of [12] and the REPEATED
statement specifies the matrix R = V(e) in model [12].
After variance and covariance estimates are obtained,
they are inserted in place of the true parameter values
in [22] and [24]. Then the second step is to compute
test statistics and confidence intervals based on [23]
and [24], using t and F distributions.

Statements [11] are examples of linear combina-
tions of fixed effect parameters. In terms of model [13],
the true mean for treatment i at time k is

mik = m + ai + tk + ( at) ik.

The ESTIMATE statement in [11], labeled ‘trt A−B at
day 1’, computes an estimate of

mA1 − mB1 = aA − aB + ( at) A1 − ( at) B1.

In similar fashion, the ESTIMATE statement in [11],
labeled ‘DAY.1 in trt D’ computes an estimate of mD1 −
( mD2 + ... + mD10)/9 = ( ( at) D2 + ... + ( at) D10)/9. The
statements [11] can be implemented with the univari-
ate ANOVA statements [2], but standard errors of
estimates would not necessarily be valid because the
sheep urinary Mg data do not have compound
symmetric covariance structure.

For more information on mixed models, see Searle
(1971), Harville (1977), McLean et al. (1991),
Milliken and Johnson (1992), and Searle et al.
(1992).


